ON SOME NEW IDENTITIES FOR THE FIBONOMIAL COEFFICIENTS

DIEGO MARQUES* AND PAVEL TROJOVSKÝ**

ABSTRACT. Let F_n be the n-th Fibonacci number. The Fibonomial coefficients $\begin{bmatrix} n \\ k \end{bmatrix}_F$ are defined for $n \geq k > 0$ as follows

$$\begin{bmatrix} n \\ k \end{bmatrix}_F = \frac{F_n F_{n-1} \cdots F_{n-k+1}}{F_1 F_2 \cdots F_k} ,$$

with ${n\brack 0}_F=1$ and ${n\brack k}_F=0$ for n< k. In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that

$$\sum_{j=0}^{4l+1} \operatorname{sgn}(2l-j) {4l+1 \choose j}_F F_{n-j} = -\frac{F_{2l-1}}{F_{4l+1}} {4l+1 \choose 2l}_F F_{n-4l-1},$$

holds for all non-negative integers n and l.

1. Introduction

In 1915, Fontené published a one-page note [1] suggesting a generalization of binomial coefficients, replacing the natural numbers by the terms of an arbitrary sequence $\{a_n\}$ of real or complex numbers. Thus the generalized binomial coefficients are defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_a = \frac{a_n a_{n-1} \cdots a_{n-k+1}}{a_1 a_2 \cdots a_k} \ .$$

Setting $a_n = n$ we recover the ordinary binomial coefficients, while $a_n = q^n - 1$ we obtain the q-binomial coefficients studied by Gauss, Euler, Cauchy and which were shortly called q-Gaussian coefficients (Gauss q-binomial coefficients). The sequence $\{a_n\}$ is essentially arbitrary but we do require that $a_n \neq 0$ for $n \geq 1$.

²⁰¹⁰ Mathematics Subject Classification. Primary 11B39, 15A36; Secondary 15A15.

Key words and phrases. Fibonacci and Lucas numbers, Fibonomial Coefficients, identity,

Research supported in part by FEMAT-Brazil, CNPq-Brazil and Specific research 2103 UHK CZ.

The generalized binomial coefficients have many interesting properties. Obviously, for an integer $n \geq 1$,

$$\begin{bmatrix} n \\ k \end{bmatrix}_a = \begin{bmatrix} n \\ n-k \end{bmatrix}_a, \begin{bmatrix} n \\ 1 \end{bmatrix}_a = a_n \text{ and } \begin{bmatrix} n \\ n \end{bmatrix}_a = 1.$$

Specially, take a sequence $\{a_n\}$ of positive integers generated by

$$a_{n+2} = g \, a_{n+1} - h \, a_n \tag{1}$$

for integers $n \geq 0$, where $g, h \neq 0$ are real numbers. Let α and β , $\alpha \neq \beta$, be the roots of the characteristic equation $x^2 - gx + h = 0$ and let u_n , v_n be the solutions of (1) defined by $u_n = (\alpha^n - \beta^n)/(\alpha - \beta)$ and $v_n = \alpha^n + \beta^n$. Jarden [3] found the following formula

$$\sum_{j=0}^{k} (-1)^{j} {n \brack k}_{a} h^{\frac{j-1}{2}} z_{n+k-j} = 0 ,$$

where z_n is the product of the *n*-th terms of k-1 sequences satisfying (1).

Since 1964, there has been an accelerated interest in Fibonomial coefficients, which correspond to the choice $a_n = F_n$, where F_n are the Fibonacci numbers defined by (1) for g = 1, h = -1.

It is easy to write the key recurrence formula in the form

$$\begin{bmatrix} n \\ k \end{bmatrix}_F = F_{k+1} \begin{bmatrix} n-1 \\ k \end{bmatrix}_F + F_{n-k-1} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_F .$$

We refer the reader to recent papers [4] and [5] for results on the spacing and perfect powers among Fibonomial coefficients, respectively.

For the signed Fibonomial coefficients $(-1)^{\frac{j}{2}(j+1)}{k \brack j}_F$ (named A055870 in Sloane's encyclopedia of sequences), we can found the following identity, see [14], (a little rewritten)

$$\sum_{i=0}^{k} (-1)^{\frac{j}{2}(j+1)} {k \brack j}_F F_{n-j}^{k-1} = 0 \ ,$$

where n, k are any positive integers with $n \ge k + 1$.

In [6], we obtain for any non-negative integer $l \equiv 0, 2 \pmod 4$ the following identity

$$\sum_{i=0}^{l} (-1)^{\frac{j}{2}(j+(-1)^{l/2})} \begin{bmatrix} l \\ j \end{bmatrix}_{F} F_{n+l-j} = 0 .$$

In this paper, we shall study the similar sums of the Fibonomial coefficients, but for $l \equiv 1, 3 \pmod{4}$. The following theorem is our main result.

Theorem 1. Let l, n be any non-negative integers. Then

$$\sum_{j=0}^{4l+3} sgn(2l+1-j) \begin{bmatrix} 4l+3 \\ j \end{bmatrix}_F F_{n-j} = \frac{F_{2l}}{F_{4l+3}} \begin{bmatrix} 4l+3 \\ 2l+1 \end{bmatrix}_F F_{n-4l-3}$$
 (2)

and

$$\sum_{i=0}^{4l+1} sgn(2l-j) \begin{bmatrix} 4l+1 \\ j \end{bmatrix}_F F_{n-j} = -\frac{F_{2l-1}}{F_{4l+1}} \begin{bmatrix} 4l+1 \\ 2l \end{bmatrix}_F F_{n-4l-1} . \tag{3}$$

As usual, in the above statement, sgn(x) denotes the sign function of x, defined by sgn(0) = 0 and sgn(x) = x/|x|, for $x \neq 0$.

2. The preliminary results

First, we extend the definition of the Fibonomial coefficients, for any integers n, k, by the following way

$$\begin{bmatrix} n \\ k \end{bmatrix}_F = \left\{ \begin{array}{cc} 0, & \text{if } k < 0; \\ 1, & \text{if } k = 0; \\ \prod_{i=0}^{k-1} \frac{F_{n-i}}{F_{k-i}}, & \text{in other cases.} \end{array} \right.$$

Throughout what follows, $\{L_n\}$ denotes the sequence of *Lucas numbers* which follows the same recursive pattern as Fibonacci numbers, but with initial values $L_0 = 2$ and $L_1 = 1$.

Lemma 2. Let k, l, m be any integers. Then

$$F_{2l} - (-1)^l = L_{l-1} F_{l+1} , (4)$$

$$F_{2l+1} - (-1)^l = L_{l+1}F_l , (5)$$

$$F_{l+2}F_{2l} + (-1)^l F_{l-1} = F_{l+1}F_{2l+1}, (6)$$

$$F_{k+1}F_{l-k} - F_kF_{l-k+1} = (-1)^k F_{l-2k}, (7)$$

$$F_{l-k}F_{l-k+1} - F_{l+1}F_{l-2k} = (-1)^l F_k F_{k+1}.$$
 (8)

$$F_{l+1}F_{2l+1} + (-1)^{l+1}F_{l-1} = F_{l+2}F_{2l}, (9)$$

$$F_{2l+1}L_{l+1} + (-1)^l L_{l+2} = F_{l+2}L_l^2, (10)$$

$$F_{k+1}F_{l-k+2} - F_{k+2}F_{l-k+1} = (-1)^k F_{l-2k}, (11)$$

$$F_{m+k+l}^2 + (-1)^{l+1} F_{m-k}^2 = F_{2m+l} F_{2k+l}.$$
(12)

Proof. Identities (4) and (5) follows from identity

$$F_{n+m} - (-1)^m F_{n-m} = F_m L_n ,$$

see (15b) in [11], setting m = l + 1, n = l - 1 and m = l, n = l + 1 respectively. Identity (6) follows from identity

$$F_{a+b}F_{a+c} - F_aF_{a+b+c} = (-1)^a F_b F_c , \qquad (13)$$

see (20a) in [11], setting c = 1, a = l, b = l - 1 and using basic recurrence.

Identity (7) follows from identity (13) setting c = 1, a = k, b = l - 2k.

Identity (8) follows from identity (13) setting a = l + 1, b = k + 1, c = -k - 1 and using identity $F_{-a} = (-1)^{a+1}F_a$ (see [11], identity (2)).

Identity (9) follows from identity (13) setting a = l + 3, b = l - 1, c = 1 and using Fibonacci recurrence relation.

Identity (10) can be rewritten by identities $L_{2n}+2\cdot(-1)^n=L_n^2$ and $F_n+L_n=2F_{n+1}$ (see identities (17c) and (7b) in [11]), to the form

$$F_{l+2}L_{2l} - F_{2l+1}L_{l+1} = (-1)^l F_{l-1}$$
,

which follows from identity (13) setting a = l + 1, b = l - 1, c = 1.

Identity (11) follows from (7) using the basic recurrence.

Identity (12) follows identity (13) setting c = m - p, b = m - p and a = n + 2p.

Lemma 3. Let $l, k \neq -1$ be any integers. Then the following holds

$$(-1)^{l} \begin{bmatrix} l \\ k+1 \end{bmatrix}_{F} + \begin{bmatrix} l+1 \\ k \end{bmatrix}_{F} \frac{F_{2k-l}}{F_{k+1}} = \begin{bmatrix} l \\ k-1 \end{bmatrix}_{F}.$$

 ${\it Proof.}$ After overwriting the Fibonomial coefficients using their definition, we obtain the identity

$$(-1)^l F_{l-k+1} F_{l-k} + F_{2k-l} F_{l+1} = F_k F_{k+1} ,$$

which follows from identity (8) using again identity $F_{-a} = (-1)^{a+1} F_a$.

Lemma 4. Let l, k be any integers. Then the following holds

$$\begin{bmatrix} 4l+2 \\ 2k \end{bmatrix}_F \frac{F_{4l+2}F_{2l+3}}{F_{2l+1}} + \begin{bmatrix} 4l+3 \\ 2k+1 \end{bmatrix}_F (F_{4l-2k+3} - F_{2k+2})$$

$$+ \begin{bmatrix} 4l+3 \\ 2k+2 \end{bmatrix}_F (F_{4l-2k+2} - F_{2k+3}) = \begin{bmatrix} 4l+2 \\ 2k+2 \end{bmatrix}_F \frac{F_{4l+2}F_{2l+3}}{F_{2l+1}} .$$

Proof. After overwriting the Fibonomial coefficients using their definition we get

$$\begin{split} F_{4l+2}F_{2l+3}F_{2k+1}F_{2k+2} + F_{4l+3}F_{2l+1}F_{2k+2}(F_{4l-2k+3} - F_{2k+2}) \\ + F_{4l+3}F_{2l+1}F_{4l-2k+2}(F_{4l-2k+2} - F_{2k+3}) \\ = F_{4l-2k+2}F_{4l-2k+1}F_{4l+2}F_{2l+3} \end{split}$$

which can be simplified by basic recurrence for the Fibonacci numbers and using identities (4), (7), where we replace k by 2k and l by 4l, and (8), where we replace k by 2k + 1 and l by 4l + 2, to the form

$$F_{4l-2k+2}^2 - F_{2k+2}^2 = F_{4(l+1)}F_{4(l-k)}$$

which is the special form of identity (12) for m = 0, n = 4(l - k) and p = 2k + 2.

Lemma 5. Let $l \neq 0$, k be any integers. Then the following holds

$$\begin{bmatrix}
4l \\
2k-1
\end{bmatrix}_{F} \frac{F_{4l}F_{2l+2}}{F_{2l}} + \begin{bmatrix}
4l+1 \\
2k
\end{bmatrix}_{F} (F_{4l-2k+2} - F_{2k+1})
+ \begin{bmatrix}
4l+1 \\
2k+1
\end{bmatrix}_{F} (F_{4l-2k+1} - F_{2k+2})
= \begin{bmatrix}
4l \\
2k+1
\end{bmatrix}_{F} \frac{F_{4l}F_{2l+2}}{F_{2l}}.$$

Proof. The proof is very similar as in Lemma 4. After overwriting the Fibonomial coefficients using their definition we get

$$F_{4l}F_{2l+2}F_{2k}F_{2k+1} + F_{4l+1}F_{2l}F_{2k+1}(F_{4l-2k+2} - F_{2k+1})$$

$$+F_{4l+1}F_{2l}F_{4l-2k+1}(F_{4l-2k+1} - F_{2k+2})$$

$$= F_{4l-2k+1}F_{4l-2k}F_{4l}F_{2l+2} ,$$

which can be simplified by basic recurrence for the Fibonacci numbers and using identities (4), (11), where we replace k by 2k and l by 4l, and (8), where we replace k by 2k and l by 4l, to the form

$$F_{4l-2k+1}^2 - F_{2k+1}^2 = F_{2(2l+1)}F_{4(l-k)} ,$$

which is the special form of identity (12) for m = 0, n = 4(l - k) and p = 2k + 1.

Lemma 6. Let l, k be any integers. Then

$$(-1)^{l} \begin{bmatrix} l \\ k-1 \end{bmatrix}_{E} + \begin{bmatrix} l+1 \\ k+1 \end{bmatrix}_{E} \frac{F_{l-2k}}{F_{l-k+1}} = \begin{bmatrix} l \\ k+1 \end{bmatrix}_{E}$$

for $l \neq k-1$.

Proof. After overwriting the Fibonomial coefficients using their definition we obtain identity (8).

Theorem 7. Let l be any integer and n any non-negative integer. Then

$$\sum_{i=0}^{2n} {4l+3 \choose j}_F (F_{4l+4-j} - F_{j+1}) = {4l+2 \choose 2n}_F \frac{F_{4l+2}F_{2l+3}}{F_{2l+1}} . \tag{14}$$

Proof. We use the induction with respect to n. For n = 0 the assertion follows from (4) replacing l by 2l + 2 and using well-known equality $F_lL_l = F_{2l}$. Let us suppose that the identity holds for n = k and prove it for n = k + 1. The

left-hand side can be rewritten as

$$\sum_{j=0}^{2k+2} {4l+3 \brack j}_F (F_{4l+4-j} - F_{j+1}) = \sum_{j=0}^{2k} {4l+3 \brack j}_F (F_{4l+4-j} - F_{j+1})$$

$$+ {4l+3 \brack 2k+1}_F (F_{4l-2k+3} - F_{2k+2})$$

$$+ {4l+3 \brack 2k+2}_F (F_{4l-2k+2} - F_{2k+3})$$

and the proof follows from Lemma 4.

Theorem 8. Let l be any integer and n any positive integer. Then

$$\sum_{i=1}^{n} \begin{bmatrix} 4l-1 \\ 2j-1 \end{bmatrix}_{F} \frac{F_{4(l-j)}}{F_{2j}} = \begin{bmatrix} 4l-2 \\ 2n \end{bmatrix}_{F} - 1.$$
 (15)

Proof. We use the induction with respect to n. For n=1 the assertion is implied by (8) putting k=1 and replacing l by 4l-2. Let us suppose that proved identity holds for n=k and prove it for n=k+1. The left side of (15) has the form

$$\sum_{j=1}^{k+1} \begin{bmatrix} 4l-1 \\ 2j-1 \end{bmatrix}_F \frac{F_{4(l-j)}}{F_{2j}} = \sum_{j=1}^{k} \begin{bmatrix} 4l-1 \\ 2j-1 \end{bmatrix}_F \frac{F_{4(l-j)}}{F_{2j}} + \begin{bmatrix} 4l-1 \\ 2k+1 \end{bmatrix}_F \frac{F_{4(l-k-1)}}{F_{2(k+1)}}$$

and the proved identity follows from Lemma 3 replacing k by 2k+1 and l by $4l-2. \ \blacksquare$

Corollary 9. Let n be any positive integer. Then

$$\sum_{j=1}^{n} (-1)^{j} L_{2j} = (-1)^{n} F_{2n+1} - 1 ,$$

$$\sum_{j=1}^{n} (-1)^{j} F_{2j+1} F_{2j+2} F_{2j+3} F_{4(j+1)} = \frac{(-1)^{n}}{5} F_{2n+1} F_{2n+2} F_{2n+3} F_{2n+4} F_{2n+5} - 6 .$$

Proof. We get the first relation setting l=0 in (15) and using identities $\begin{bmatrix} -2\\2n\end{bmatrix}_F=(-1)^nF_{2n+1}$ and $\begin{bmatrix} -1\\2j-1\end{bmatrix}_F=(-1)^{j+1}$, which follow from our extension of definition of the Fibonomial coefficient. The second relation we obtain similarly setting l=-1 in (15).

Theorem 10. Let l and n be any integers. Then

$$\begin{split} \sum_{j=1}^n \sigma(j,l) &= \begin{bmatrix} 4l-2 \\ 2n \end{bmatrix}_F - 1 \ , \ \ where \\ \sigma(j,l) &= \begin{cases} -1, & j=2l; \\ {2j \brack 2j}_F \frac{F_{4(l-j)}}{F_{2(2l-j)}}, & j \neq 2l, \end{cases} \end{split}$$

and

$$\sum_{j=0}^{n} \begin{bmatrix} 4l \\ 2j \end{bmatrix}_{F} F_{4(l-j)} = F_{4l} \begin{bmatrix} 4l-2 \\ 2n \end{bmatrix}_{F}.$$

Proof. By overwriting the Fibonomial coefficients we obtain

$$\begin{bmatrix} 4l-1 \\ 2j-1 \end{bmatrix}_F \frac{F_{4(l-j)}}{F_{2j}} = \begin{cases} -1, & j=2l; \\ \begin{bmatrix} 4l-1 \\ 2j \end{bmatrix}_F \frac{F_{4(l-j)}}{F_{2(2l-j)}}, & j \neq 2l \end{cases}$$

and the first identity follows from (15). The second identity clearly holds for l=0 and for $l\neq 0$ we use the relation

$$\begin{bmatrix} 4l-1 \\ 2j-1 \end{bmatrix}_F \frac{F_{4(l-j)}}{F_{2j}} = \begin{bmatrix} 4l \\ 2j \end{bmatrix}_F \frac{F_{4(l-j)}}{F_{4l}},$$

which can be derived by overwriting the Fibonomial coefficients again, and the assertion is implied by (15).

Theorem 11. Let $l \neq 0$ be any integer and n any positive integer. Then

$$\sum_{j=0}^{2n-1} {4l+1 \brack j}_F (F_{4l+2-j} - F_{j+1}) = {4l \brack 2n-1}_F \frac{F_{2l+2}F_{4l}}{F_{2l}} . \tag{16}$$

Proof. We use the induction with respect to n. For n=1 we obtain after overwriting the Fibonomial coefficients the following identity

$$F_{4l+2} - 1 + F_{4l+1}^2 - F_{4l+1} = \frac{F_{4l}^2 F_{2l+2}}{F_{2l}} \ .$$

Using relations $F_{2l} = F_l L_l$ and (5) we can rewrite it to the identity $L_{2l+2} + F_{4l+1}L_{2l+1} = L_{2l}^2 F_{2l+2}$, which follows from (10) replacing l by 2l.

Let us suppose, by the induction hypothesis, that the proved identity holds for n = k and prove it for n = k + 1. The left side we can write as

$$\sum_{j=0}^{2k+1} {4l+1 \brack j}_F (F_{4l+2-j} - F_{j+1})$$

$$= \sum_{j=0}^{2k-1} {4l+1 \brack j}_F (F_{4l+2-j} - F_{j+1}) + {4l+1 \brack 2k}_F (F_{4l-2k+2} - F_{2k+1})$$

$$+ {4l+1 \brack 2k+1}_F (F_{4l-2k+1} - F_{2k+2})$$

and the proved identity follows from Lemma 5.

3. The proof of Theorem 1

Firstly we prove identity (2). This identity can be rewritten as

$$\sum_{j=0}^{2l} {4l+3 \brack j}_F F_{n+4l+3-j} - \sum_{j=2l+2}^{4l+3} {4l+3 \brack j}_F F_{n+4l+3-j} = \frac{F_{2l}}{F_{4l+3}} {4l+3 \brack 2l+1}_F F_n$$

and replacing j by (4l+3)-j in the second sum and simplifying to the form

$$\sum_{i=0}^{2l} {4l+3 \brack j}_F (F_{n+4l+3-j} - F_{n+j}) = {4l+3 \brack 2l+1}_F \left(F_{n+2l+1} + \frac{F_n F_{2l}}{F_{4l+3}}\right) .$$

We prove it by induction with respect to n. Let n = 0, thus we have to show that

$$\sum_{j=0}^{2l} {4l+3 \choose j}_F (F_{4l+3-j} - F_j) = {4l+3 \choose 2l+1}_F F_{2l+1}.$$

But this identity follows from the relation $\begin{bmatrix} m \\ j \end{bmatrix}_F F_{m-j} = \begin{bmatrix} m \\ j+1 \end{bmatrix}_F F_{j+1}$, where m, j are any non-negative integers, which can be easily obtained overwriting the Fibonomial coefficients, by the following way

$$\sum_{j=0}^{2l} {4l+3 \brack j}_F (F_{4l+3-j} - F_j) = \sum_{j=0}^{2l} {4l+3 \brack j+1}_F F_{j+1} - {4l+3 \brack j}_F F_j$$

$$= {4l+3 \brack 2l+1}_F F_{2l+1} - {4l+3 \brack 0}_F F_0$$

$$= {4l+3 \brack 2l+1}_F F_{2l+1}.$$

Let n = 1. Then we have to prove the identity

$$\sum_{j=0}^{2l} {4l+3 \brack j}_F (F_{4l+4-j} - F_{j+1}) = {4l+3 \brack 2l+1}_F \left(F_{2l+2} + \frac{F_{2l}}{F_{4l+3}} \right) .$$

It can be simplified with respect to (6), where we replace l by 2l + 1, to

$$\sum_{i=0}^{2l} {4l+3 \choose j}_F (F_{4l+4-j} - F_{j+1}) = {4l+3 \choose 2l+1}_F \frac{F_{2l+3}F_{4l+2}}{F_{4l+3}}$$

and

$$\sum_{i=0}^{2l} {4l+3 \choose j}_F (F_{4l+4-j} - F_{j+1}) = {4l+2 \choose 2l}_F \frac{F_{4l+2}F_{2l+3}}{F_{2l+1}}$$

but this is a special case of identity (14) for n = l only.

If we consider that (2) holds for n and n+1, then adding of appurtant identities and using the basic recurrence $F_{n+2} = F_n + F_{n+1}$ the proof of (2) is over.

Now we prove identity (3). It obviously holds for l=0 therefore we consider l>0 in the next part of proof.

The identity can be rewritten as

$$\sum_{j=0}^{2l-1} \begin{bmatrix} 4l+1 \\ j \end{bmatrix}_F F_{n+4l+1-j} - \sum_{j=2l+1}^{4l+1} \begin{bmatrix} 4l+1 \\ j \end{bmatrix}_F F_{n+4l+1-j} = -\frac{F_{2l-1}}{F_{4l+1}} \begin{bmatrix} 4l+1 \\ 2l \end{bmatrix}_F F_n \ .$$

and replacing j by (4l+1)-j in the second sum and simplifying to the form

$$\sum_{i=0}^{2l-1} {4l+1 \brack j}_F (F_{n+4l+1-j} - F_{n+j}) = {4l+1 \brack 2l}_F \left(F_{n+2l} - \frac{F_n F_{2l-1}}{F_{4l+1}}\right) \ .$$

We again prove it by induction with respect to n. For n = 0 the proof can be done analogously as proof of (2) for n = 1.

Let n = 1. Then we have to show that

$$\sum_{j=0}^{2l-1} {4l+1 \brack j}_F (F_{4l+2-j} - F_{j+1}) = {4l+1 \brack 2l}_F \left(F_{2l+1} - \frac{F_{2l-1}}{F_{4l+1}} \right) .$$

This relation can be simplified using (9), where we replace l by 2l, to

$$\sum_{i=0}^{2l-1} {4l+1 \brack j}_F (F_{4l+2-j} - F_{j+1}) = {4l+1 \brack j}_F \frac{F_{2l+2}F_{4l}}{F_{4l+1}} .$$

and

$$\sum_{j=0}^{2l-1} \begin{bmatrix} 4l+1 \\ j \end{bmatrix}_F (F_{4l+2-j} - F_{j+1}) = \begin{bmatrix} 4l \\ 2l-1 \end{bmatrix}_F \frac{F_{2l+2}F_{4l}}{F_{2l}} ,$$

which is a special case of identity (16). The induction leap is the same as in the proof of identity (2).

ACKNOWLEDGEMENTS

The first author is grateful to FEMAT-Brazil and CNPq-Brazil for the financial support.

References

- [1] Fontené, G.: Généralisation d'ene formule connue, Nouv. Ann. Math 4 (15) (1915), 112.
- [2] Horadam, A. F.: Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965), 437–446.
- [3] Jarden, D.: Recurring sequences, In. A Colletion of Papers, Riveon Lematematika, 1966.
- [4] Luca, F.—Marques, D.—Stănică, P.: On the spacings between C-nomial coefficients, J. Number Theory 130 (2010), 82–100.
- [5] Marques, D.—Togbé, A.: Perfect powers among C-nomial coefficients, C. R. Acad. Sci. Paris I 348 (2010), 717–720.
- [6] Marques, D.—Trojovský, P.: On some new sums of Fibonomial coefficients, Fibonacci Quart. 50 (2012), 155–163.
- [7] Riordan, J.: functions for powers of Fibonacci, Duke Math. J. 29 (1962), 5–12.
- [8] Shannon, A. G.: A method of Carlitz applied to the k-th power generating function for Fibonacci numbers, Fibonacci Quart. 12 (1974), 293–299.
- [9] Seibert, J.—Trojovský, P.: On some identities for the Fibonomial coefficients. Math. Slovaca 55 (2005), 9–19.
- [10] Torretto, R.—Fuchs, A.: Generalized Binomial Coefficients, Fibonacci Quart. 2 (1964), 296–302.
- [11] Vajda, S.: Fibonacci and Lucas Numbers and the Golden Section, Holstel Press, 1989.
- [12] Vorobiev, N. N.: Fibonacci Numbers, Birkhäuser, Basel, 2003.
- [13] Ward, M.: A calculus of sequences, Amer. J. Math., 58 (1936), 255–266.
- [14] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences (OEIS), published electronically at http://oeis.org/
- * DEPARTAMENTO DE MATEMÁTICA,

Universidade de Brasília,

70910-900 Brasília - DF,

Brazil

E-mail address: diego@mat.unb.br

** Department of Mathematics,

FACULTY OF SCIENCE,

University of Hradec Králové,

Rokitanského 62,

HRADEC KRÁLOVÉ,

CZECH REPUBLIC

 $E ext{-}mail\ address: pavel.trojovsky@uhk.cz}$