ON SOME NEW IDENTITIES FOR THE FIBONOMIAL COEFFICIENTS

DIEGO MARQUES* AND PAVEL TROJOVSKÝ**

Abstract. Let F_{n} be the n-th Fibonacci number. The Fibonomial coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]_{F}$ are defined for $n \geq k>0$ as follows

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{F}=\frac{F_{n} F_{n-1} \cdots F_{n-k+1}}{F_{1} F_{2} \cdots F_{k}}
$$

with $\left[\begin{array}{c}n \\ 0\end{array}\right]_{F}=1$ and $\left[\begin{array}{c}n \\ k\end{array}\right]_{F}=0$ for $n<k$. In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that

$$
\sum_{j=0}^{4 l+1} \operatorname{sgn}(2 l-j)\left[\begin{array}{c}
4 l+1 \\
j
\end{array}\right]_{F} F_{n-j}=-\frac{F_{2 l-1}}{F_{4 l+1}}\left[\begin{array}{c}
4 l+1 \\
2 l
\end{array}\right]_{F} F_{n-4 l-1}
$$

holds for all non-negative integers n and l.

1. Introduction

In 1915, Fontené published a one-page note [1] suggesting a generalization of binomial coefficients, replacing the natural numbers by the terms of an arbitrary sequence $\left\{a_{n}\right\}$ of real or complex numbers. Thus the generalized binomial coefficients are defined by

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{a}=\frac{a_{n} a_{n-1} \cdots a_{n-k+1}}{a_{1} a_{2} \cdots a_{k}}
$$

Setting $a_{n}=n$ we recover the ordinary binomial coefficients, while $a_{n}=q^{n}-1$ we obtain the q-binomial coefficients studied by Gauss, Euler, Cauchy and which were shortly called q-Gaussian coefficients (Gauss q-binomial coefficients). The sequence $\left\{a_{n}\right\}$ is essentially arbitrary but we do require that $a_{n} \neq 0$ for $n \geq 1$.

[^0]The generalized binomial coefficients have many interesting properties. Obviously, for an integer $n \geq 1$,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{a}=\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{a},\left[\begin{array}{l}
n \\
1
\end{array}\right]_{a}=a_{n} \text { and }\left[\begin{array}{l}
n \\
n
\end{array}\right]_{a}=1
$$

Specially, take a sequence $\left\{a_{n}\right\}$ of positive integers generated by

$$
\begin{equation*}
a_{n+2}=g a_{n+1}-h a_{n} \tag{1}
\end{equation*}
$$

for integers $n \geq 0$, where $g, h \neq 0$ are real numbers. Let α and $\beta, \alpha \neq \beta$, be the roots of the characteristic equation $x^{2}-g x+h=0$ and let u_{n}, v_{n} be the solutions of (1) defined by $u_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$ and $v_{n}=\alpha^{n}+\beta^{n}$. Jarden [3] found the following formula

$$
\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{a} h^{\frac{j-1}{2}} z_{n+k-j}=0
$$

where z_{n} is the product of the n-th terms of $k-1$ sequences satisfying (1).
Since 1964, there has been an accelerated interest in Fibonomial coefficients, which correspond to the choice $a_{n}=F_{n}$, where F_{n} are the Fibonacci numbers defined by (1) for $g=1, h=-1$.

It is easy to write the key recurrence formula in the form

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{F}=F_{k+1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{F}+F_{n-k-1}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{F} .
$$

We refer the reader to recent papers [4] and [5] for results on the spacing and perfect powers among Fibonomial coefficients, respectively.

For the signed Fibonomial coefficients $(-1)^{\frac{j}{2}(j+1)}\left[\begin{array}{c}k \\ j\end{array}\right]_{F}$ (named A055870 in Sloane's encyclopedia of sequences), we can found the following identity, see [14], (a little rewritten)

$$
\sum_{j=0}^{k}(-1)^{\frac{j}{2}(j+1)}\left[\begin{array}{l}
k \\
j
\end{array}\right]_{F} F_{n-j}^{k-1}=0
$$

where n, k are any positive integers with $n \geq k+1$.
In [6], we obtain for any non-negative integer $l \equiv 0,2(\bmod 4)$ the following identity

$$
\sum_{j=0}^{l}(-1)^{\frac{j}{2}\left(j+(-1)^{l / 2}\right)}\left[\begin{array}{l}
l \\
j
\end{array}\right]_{F} F_{n+l-j}=0
$$

In this paper, we shall study the similar sums of the Fibonomial coefficients, but for $l \equiv 1,3(\bmod 4)$. The following theorem is our main result.

Theorem 1. Let l, n be any non-negative integers. Then

$$
\sum_{j=0}^{4 l+3} \operatorname{sgn}(2 l+1-j)\left[\begin{array}{c}
4 l+3 \tag{2}\\
j
\end{array}\right]_{F} F_{n-j}=\frac{F_{2 l}}{F_{4 l+3}}\left[\begin{array}{c}
4 l+3 \\
2 l+1
\end{array}\right]_{F} F_{n-4 l-3}
$$

and

$$
\sum_{j=0}^{4 l+1} \operatorname{sgn}(2 l-j)\left[\begin{array}{c}
4 l+1 \tag{3}\\
j
\end{array}\right]_{F} F_{n-j}=-\frac{F_{2 l-1}}{F_{4 l+1}}\left[\begin{array}{c}
4 l+1 \\
2 l
\end{array}\right]_{F} F_{n-4 l-1} .
$$

As usual, in the above statement, $\operatorname{sgn}(x)$ denotes the sign function of x, defined by $\operatorname{sgn}(0)=0$ and $\operatorname{sgn}(x)=x /|x|$, for $x \neq 0$.

2. The preliminary results

First, we extend the definition of the Fibonomial coefficients, for any integers n, k, by the following way

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{F}=\left\{\begin{array}{cc}
0, & \text { if } k<0 \\
1, & \text { if } k=0 \\
\prod_{i=0}^{k-1} \frac{F_{n-i}}{F_{k-i}}, & \text { in other cases. }
\end{array}\right.
$$

Throughout what follows, $\left\{L_{n}\right\}$ denotes the sequence of Lucas numbers which follows the same recursive pattern as Fibonacci numbers, but with initial values $L_{0}=2$ and $L_{1}=1$.

Lemma 2. Let k, l, m be any integers. Then

$$
\begin{gather*}
F_{2 l}-(-1)^{l}=L_{l-1} F_{l+1}, \tag{4}\\
F_{2 l+1}-(-1)^{l}=L_{l+1} F_{l}, \tag{5}\\
F_{l+2} F_{2 l}+(-1)^{l} F_{l-1}=F_{l+1} F_{2 l+1}, \tag{6}\\
F_{k+1} F_{l-k}-F_{k} F_{l-k+1}=(-1)^{k} F_{l-2 k}, \tag{7}\\
F_{l-k} F_{l-k+1}-F_{l+1} F_{l-2 k}=(-1)^{l} F_{k} F_{k+1} . \tag{8}\\
F_{l+1} F_{2 l+1}+(-1)^{l+1} F_{l-1}=F_{l+2} F_{2 l}, \tag{9}\\
F_{2 l+1} L_{l+1}+(-1)^{l} L_{l+2}=F_{l+2} L_{l}^{2}, \tag{10}\\
F_{k+1} F_{l-k+2}-F_{k+2} F_{l-k+1}=(-1)^{k} F_{l-2 k}, \tag{11}\\
F_{m+k+l}^{2}+(-1)^{l+1} F_{m-k}^{2}=F_{2 m+l} F_{2 k+l} . \tag{12}
\end{gather*}
$$

Proof. Identities (4) and (5) follows from identity

$$
F_{n+m}-(-1)^{m} F_{n-m}=F_{m} L_{n},
$$

see (15b) in [11], setting $m=l+1, n=l-1$ and $m=l, n=l+1$ respectively.
Identity (6) follows from identity

$$
\begin{equation*}
F_{a+b} F_{a+c}-F_{a} F_{a+b+c}=(-1)^{a} F_{b} F_{c}, \tag{13}
\end{equation*}
$$

see (20a) in [11], setting $c=1, a=l, b=l-1$ and using basic recurrence.
Identity (7) follows from identity (13) setting $c=1, a=k, b=l-2 k$.
Identity (8) follows from identity (13) setting $a=l+1, b=k+1, c=-k-1$ and using identity $F_{-a}=(-1)^{a+1} F_{a}$ (see [11], identity (2)).

Identity (9) follows from identity (13) setting $a=l+3, b=l-1, c=1$ and using Fibonacci recurrence relation.

Identity (10) can be rewritten by identities $L_{2 n}+2 \cdot(-1)^{n}=L_{n}^{2}$ and $F_{n}+L_{n}=$ $2 F_{n+1}$ (see identities (17c) and (7b) in [11]), to the form

$$
F_{l+2} L_{2 l}-F_{2 l+1} L_{l+1}=(-1)^{l} F_{l-1},
$$

which follows from identity (13) setting $a=l+1, b=l-1, c=1$.
Identity (11) follows from (7) using the basic recurrence.
Identity (12) follows identity (13) setting $c=m-p, b=m-p$ and $a=n+2 p$.

Lemma 3. Let $l, k \neq-1$ be any integers. Then the following holds

$$
(-1)^{l}\left[\begin{array}{c}
l \\
k+1
\end{array}\right]_{F}+\left[\begin{array}{c}
l+1 \\
k
\end{array}\right]_{F} \frac{F_{2 k-l}}{F_{k+1}}=\left[\begin{array}{c}
l \\
k-1
\end{array}\right]_{F} .
$$

Proof. After overwriting the Fibonomial coefficients using their definition, we obtain the identity

$$
(-1)^{l} F_{l-k+1} F_{l-k}+F_{2 k-l} F_{l+1}=F_{k} F_{k+1}
$$

which follows from identity (8) using again identity $F_{-a}=(-1)^{a+1} F_{a}$.
Lemma 4. Let l, k be any integers. Then the following holds

$$
\begin{aligned}
& {\left[\begin{array}{c}
4 l+2 \\
2 k
\end{array}\right]_{F} \frac{F_{4 l+2} F_{2 l+3}}{F_{2 l+1}}+\left[\begin{array}{c}
4 l+3 \\
2 k+1
\end{array}\right]_{F}\left(F_{4 l-2 k+3}-F_{2 k+2}\right) } \\
+ & {\left[\begin{array}{c}
4 l+3 \\
2 k+2
\end{array}\right]_{F}\left(F_{4 l-2 k+2}-F_{2 k+3}\right)=\left[\begin{array}{c}
4 l+2 \\
2 k+2
\end{array}\right]_{F} \frac{F_{4 l+2} F_{2 l+3}}{F_{2 l+1}} . }
\end{aligned}
$$

Proof. After overwriting the Fibonomial coefficients using their definition we get

$$
\begin{aligned}
& F_{4 l+2} F_{2 l+3} F_{2 k+1} F_{2 k+2}+F_{4 l+3} F_{2 l+1} F_{2 k+2}\left(F_{4 l-2 k+3}-F_{2 k+2}\right) \\
& +F_{4 l+3} F_{2 l+1} F_{4 l-2 k+2}\left(F_{4 l-2 k+2}-F_{2 k+3}\right) \\
= & F_{4 l-2 k+2} F_{4 l-2 k+1} F_{4 l+2} F_{2 l+3}
\end{aligned}
$$

which can be simplified by basic recurrence for the Fibonacci numbers and using identities (4), (7), where we replace k by $2 k$ and l by $4 l$, and (8), where we replace k by $2 k+1$ and l by $4 l+2$, to the form

$$
F_{4 l-2 k+2}^{2}-F_{2 k+2}^{2}=F_{4(l+1)} F_{4(l-k)}
$$

which is the special form of identity (12) for $m=0, n=4(l-k)$ and $p=2 k+2$.

Lemma 5. Let $l \neq 0, k$ be any integers. Then the following holds

$$
\begin{aligned}
& {\left[\begin{array}{c}
4 l \\
2 k-1
\end{array}\right]_{F} \frac{F_{4 l} F_{2 l+2}}{F_{2 l}}+\left[\begin{array}{c}
4 l+1 \\
2 k
\end{array}\right]_{F}\left(F_{4 l-2 k+2}-F_{2 k+1}\right) } \\
& +\left[\begin{array}{c}
4 l+1 \\
2 k+1
\end{array}\right]_{F}\left(F_{4 l-2 k+1}-F_{2 k+2}\right) \\
= & {\left[\begin{array}{c}
4 l \\
2 k+1
\end{array}\right]_{F} \frac{F_{4 l} F_{2 l+2}}{F_{2 l}} . }
\end{aligned}
$$

Proof. The proof is very similar as in Lemma 4. After overwriting the Fibonomial coefficients using their definition we get

$$
\begin{aligned}
& F_{4 l} F_{2 l+2} F_{2 k} F_{2 k+1}+F_{4 l+1} F_{2 l} F_{2 k+1}\left(F_{4 l-2 k+2}-F_{2 k+1}\right) \\
& +F_{4 l+1} F_{2 l} F_{4 l-2 k+1}\left(F_{4 l-2 k+1}-F_{2 k+2}\right) \\
= & F_{4 l-2 k+1} F_{4 l-2 k} F_{4 l} F_{2 l+2},
\end{aligned}
$$

which can be simplified by basic recurrence for the Fibonacci numbers and using identities (4), (11), where we replace k by $2 k$ and l by $4 l$, and (8), where we replace k by $2 k$ and l by $4 l$, to the form

$$
F_{4 l-2 k+1}^{2}-F_{2 k+1}^{2}=F_{2(2 l+1)} F_{4(l-k)},
$$

which is the special form of identity (12) for $m=0, n=4(l-k)$ and $p=2 k+1$.

Lemma 6. Let l, k be any integers. Then

$$
(-1)^{l}\left[\begin{array}{c}
l \\
k-1
\end{array}\right]_{F}+\left[\begin{array}{l}
l+1 \\
k+1
\end{array}\right]_{F} \frac{F_{l-2 k}}{F_{l-k+1}}=\left[\begin{array}{c}
l \\
k+1
\end{array}\right]_{F}
$$

for $l \neq k-1$.
Proof. After overwriting the Fibonomial coefficients using their definition we obtain identity (8).

Theorem 7. Let l be any integer and n any non-negative integer. Then

$$
\sum_{j=0}^{2 n}\left[\begin{array}{c}
4 l+3 \tag{14}\\
j
\end{array}\right]_{F}\left(F_{4 l+4-j}-F_{j+1}\right)=\left[\begin{array}{c}
4 l+2 \\
2 n
\end{array}\right]_{F} \frac{F_{4 l+2} F_{2 l+3}}{F_{2 l+1}}
$$

Proof. We use the induction with respect to n. For $n=0$ the assertion follows from (4) replacing l by $2 l+2$ and using well-known equality $F_{l} L_{l}=F_{2 l}$. Let us suppose that the identity holds for $n=k$ and prove it for $n=k+1$. The
left-hand side can be rewritten as

$$
\begin{aligned}
\sum_{j=0}^{2 k+2}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F}\left(F_{4 l+4-j}-F_{j+1}\right)= & \sum_{j=0}^{2 k}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F}\left(F_{4 l+4-j}-F_{j+1}\right) \\
& +\left[\begin{array}{c}
4 l+3 \\
2 k+1
\end{array}\right]_{F}\left(F_{4 l-2 k+3}-F_{2 k+2}\right) \\
& +\left[\begin{array}{c}
4 l+3 \\
2 k+2
\end{array}\right]_{F}\left(F_{4 l-2 k+2}-F_{2 k+3}\right)
\end{aligned}
$$

and the proof follows from Lemma 4.
Theorem 8. Let l be any integer and n any positive integer. Then

$$
\sum_{j=1}^{n}\left[\begin{array}{c}
4 l-1 \tag{15}\\
2 j-1
\end{array}\right]_{F} \frac{F_{4(l-j)}}{F_{2 j}}=\left[\begin{array}{c}
4 l-2 \\
2 n
\end{array}\right]_{F}-1 .
$$

Proof. We use the induction with respect to n. For $n=1$ the assertion is implied by (8) putting $k=1$ and replacing l by $4 l-2$. Let us suppose that proved identity holds for $n=k$ and prove it for $n=k+1$. The left side of (15) has the form

$$
\sum_{j=1}^{k+1}\left[\begin{array}{l}
4 l-1 \\
2 j-1
\end{array}\right]_{F} \frac{F_{4(l-j)}}{F_{2 j}}=\sum_{j=1}^{k}\left[\begin{array}{l}
4 l-1 \\
2 j-1
\end{array}\right]_{F} \frac{F_{4(l-j)}}{F_{2 j}}+\left[\begin{array}{c}
4 l-1 \\
2 k+1
\end{array}\right]_{F} \frac{F_{4(l-k-1)}}{F_{2(k+1)}}
$$

and the proved identity follows from Lemma 3 replacing k by $2 k+1$ and l by $4 l-2$.

Corollary 9. Let n be any positive integer. Then

$$
\begin{aligned}
\sum_{j=1}^{n}(-1)^{j} L_{2 j} & =(-1)^{n} F_{2 n+1}-1, \\
\sum_{j=1}^{n}(-1)^{j} F_{2 j+1} F_{2 j+2} F_{2 j+3} F_{4(j+1)} & =\frac{(-1)^{n}}{5} F_{2 n+1} F_{2 n+2} F_{2 n+3} F_{2 n+4} F_{2 n+5}-6 .
\end{aligned}
$$

Proof. We get the first relation setting $l=0$ in (15) and using identities $\left[\begin{array}{c}-2 \\ 2 n\end{array}\right]_{F}=$ $(-1)^{n} F_{2 n+1}$ and $\left[\begin{array}{c}-1 \\ 2 j-1\end{array}\right]_{F}=(-1)^{j+1}$, which follow from our extension of definition of the Fibonomial coefficient. The second relation we obtain similarly setting $l=-1$ in (15).

Theorem 10. Let l and n be any integers. Then

$$
\begin{aligned}
\sum_{j=1}^{n} \sigma(j, l) & =\left[\begin{array}{c}
4 l-2 \\
2 n
\end{array}\right]_{F}-1, \text { where } \\
\sigma(j, l) & =\left\{\begin{array}{cc}
-1, & j=2 l \\
{\left[\begin{array}{c}
4 l-1 \\
2 j
\end{array}\right]_{F} \frac{F_{4(l-j)}}{F_{2(2 l-j)}},} & j \neq 2 l
\end{array}\right.
\end{aligned}
$$

and

$$
\sum_{j=0}^{n}\left[\begin{array}{c}
4 l \\
2 j
\end{array}\right]_{F} F_{4(l-j)}=F_{4 l}\left[\begin{array}{c}
4 l-2 \\
2 n
\end{array}\right]_{F} .
$$

Proof. By overwriting the Fibonomial coefficients we obtain

$$
\left[\begin{array}{l}
4 l-1 \\
2 j-1
\end{array}\right]_{F} \frac{F_{4(l-j)}}{F_{2 j}}=\left\{\begin{array}{cc}
-1, & j=2 l ; \\
{[4 l-1]_{2} \frac{F_{4(l-j)}}{F_{2(2 l-j)}},} & j \neq 2 l
\end{array}\right.
$$

and the first identity follows from (15). The second identity clearly holds for $l=0$ and for $l \neq 0$ we use the relation

$$
\left[\begin{array}{c}
4 l-1 \\
2 j-1
\end{array}\right]_{F} \frac{F_{4(l-j)}}{F_{2 j}}=\left[\begin{array}{c}
4 l \\
2 j
\end{array}\right]_{F} \frac{F_{4(l-j)}}{F_{4 l}},
$$

which can be derived by overwriting the Fibonomial coefficients again, and the assertion is implied by (15).

Theorem 11. Let $l \neq 0$ be any integer and n any positive integer. Then

$$
\sum_{j=0}^{2 n-1}\left[\begin{array}{c}
4 l+1 \tag{16}\\
j
\end{array}\right]_{F}\left(F_{4 l+2-j}-F_{j+1}\right)=\left[\begin{array}{c}
4 l \\
2 n-1
\end{array}\right]_{F} \frac{F_{2 l+2} F_{4 l}}{F_{2 l}} .
$$

Proof. We use the induction with respect to n. For $n=1$ we obtain after overwriting the Fibonomial coefficients the following identity

$$
F_{4 l+2}-1+F_{4 l+1}^{2}-F_{4 l+1}=\frac{F_{4 l}^{2} F_{2 l+2}}{F_{2 l}} .
$$

Using relations $F_{2 l}=F_{l} L_{l}$ and (5) we can rewrite it to the identity $L_{2 l+2}+$ $F_{4 l+1} L_{2 l+1}=L_{2 l}^{2} F_{2 l+2}$, which follows from (10) replacing l by $2 l$.

Let us suppose, by the induction hypothesis, that the proved identity holds for $n=k$ and prove it for $n=k+1$. The left side we can write as

$$
\begin{aligned}
& \sum_{j=0}^{2 k+1}\left[\begin{array}{c}
4 l+1 \\
j
\end{array}\right]_{F}\left(F_{4 l+2-j}-F_{j+1}\right) \\
= & \sum_{j=0}^{2 k-1}\left[\begin{array}{c}
4 l+1 \\
j
\end{array}\right]_{F}\left(F_{4 l+2-j}-F_{j+1}\right)+\left[\begin{array}{c}
4 l+1 \\
2 k
\end{array}\right]_{F}\left(F_{4 l-2 k+2}-F_{2 k+1}\right) \\
& +\left[\begin{array}{c}
4 l+1 \\
2 k+1
\end{array}\right]_{F}\left(F_{4 l-2 k+1}-F_{2 k+2}\right)
\end{aligned}
$$

and the proved identity follows from Lemma 5.

3. The proof of Theorem 1

Firstly we prove identity (2). This identity can be rewritten as

$$
\sum_{j=0}^{2 l}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F} F_{n+4 l+3-j}-\sum_{j=2 l+2}^{4 l+3}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F} F_{n+4 l+3-j}=\frac{F_{2 l}}{F_{4 l+3}}\left[\begin{array}{c}
4 l+3 \\
2 l+1
\end{array}\right]_{F} F_{n}
$$

and replacing j by $(4 l+3)-j$ in the second sum and simplifying to the form

$$
\sum_{j=0}^{2 l}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F}\left(F_{n+4 l+3-j}-F_{n+j}\right)=\left[\begin{array}{c}
4 l+3 \\
2 l+1
\end{array}\right]_{F}\left(F_{n+2 l+1}+\frac{F_{n} F_{2 l}}{F_{4 l+3}}\right)
$$

We prove it by induction with respect to n. Let $n=0$, thus we have to show that

$$
\sum_{j=0}^{2 l}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F}\left(F_{4 l+3-j}-F_{j}\right)=\left[\begin{array}{c}
4 l+3 \\
2 l+1
\end{array}\right]_{F} F_{2 l+1}
$$

But this identity follows from the relation $\left[\begin{array}{c}m \\ j\end{array}\right]_{F} F_{m-j}=\left[\begin{array}{c}m \\ j+1\end{array}\right]_{F} F_{j+1}$, where m, j are any non-negative integers, which can be easily obtained overwriting the Fibonomial coefficients, by the following way

$$
\begin{aligned}
\sum_{j=0}^{2 l}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F}\left(F_{4 l+3-j}-F_{j}\right) & =\sum_{j=0}^{2 l}\left(\left[\begin{array}{c}
4 l+3 \\
j+1
\end{array}\right]_{F} F_{j+1}-\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F} F_{j}\right) \\
& =\left[\begin{array}{c}
4 l+3 \\
2 l+1
\end{array}\right]_{F} F_{2 l+1}-\left[\begin{array}{c}
4 l+3 \\
0
\end{array}\right]_{F} F_{0} \\
& =\left[\begin{array}{c}
4 l+3 \\
2 l+1
\end{array}\right]_{F} F_{2 l+1}
\end{aligned}
$$

Let $n=1$. Then we have to prove the identity

$$
\sum_{j=0}^{2 l}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F}\left(F_{4 l+4-j}-F_{j+1}\right)=\left[\begin{array}{c}
4 l+3 \\
2 l+1
\end{array}\right]_{F}\left(F_{2 l+2}+\frac{F_{2 l}}{F_{4 l+3}}\right)
$$

It can be simplified with respect to (6), where we replace l by $2 l+1$, to

$$
\sum_{j=0}^{2 l}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F}\left(F_{4 l+4-j}-F_{j+1}\right)=\left[\begin{array}{c}
4 l+3 \\
2 l+1
\end{array}\right]_{F} \frac{F_{2 l+3} F_{4 l+2}}{F_{4 l+3}}
$$

and

$$
\sum_{j=0}^{2 l}\left[\begin{array}{c}
4 l+3 \\
j
\end{array}\right]_{F}\left(F_{4 l+4-j}-F_{j+1}\right)=\left[\begin{array}{c}
4 l+2 \\
2 l
\end{array}\right]_{F} \frac{F_{4 l+2} F_{2 l+3}}{F_{2 l+1}}
$$

but this is a special case of identity (14) for $n=l$ only.
If we consider that (2) holds for n and $n+1$, then adding of appurtant identities and using the basic recurrence $F_{n+2}=F_{n}+F_{n+1}$ the proof of (2) is over.

Now we prove identity (3). It obviously holds for $l=0$ therefore we consider $l>0$ in the next part of proof.

The identity can be rewritten as
$\sum_{j=0}^{2 l-1}\left[\begin{array}{c}4 l+1 \\ j\end{array}\right]_{F} F_{n+4 l+1-j}-\sum_{j=2 l+1}^{4 l+1}\left[\begin{array}{c}4 l+1 \\ j\end{array}\right]_{F} F_{n+4 l+1-j}=-\frac{F_{2 l-1}}{F_{4 l+1}}\left[\begin{array}{c}4 l+1 \\ 2 l\end{array}\right]_{F} F_{n}$.
and replacing j by $(4 l+1)-j$ in the second sum and simplifying to the form

$$
\sum_{j=0}^{2 l-1}\left[\begin{array}{c}
4 l+1 \\
j
\end{array}\right]_{F}\left(F_{n+4 l+1-j}-F_{n+j}\right)=\left[\begin{array}{c}
4 l+1 \\
2 l
\end{array}\right]_{F}\left(F_{n+2 l}-\frac{F_{n} F_{2 l-1}}{F_{4 l+1}}\right)
$$

We again prove it by induction with respect to n. For $n=0$ the proof can be done analogously as proof of (2) for $n=1$.

Let $n=1$. Then we have to show that

$$
\sum_{j=0}^{2 l-1}\left[\begin{array}{c}
4 l+1 \\
j
\end{array}\right]_{F}\left(F_{4 l+2-j}-F_{j+1}\right)=\left[\begin{array}{c}
4 l+1 \\
2 l
\end{array}\right]_{F}\left(F_{2 l+1}-\frac{F_{2 l-1}}{F_{4 l+1}}\right) .
$$

This relation can be simplified using (9), where we replace l by $2 l$, to

$$
\sum_{j=0}^{2 l-1}\left[\begin{array}{c}
4 l+1 \\
j
\end{array}\right]_{F}\left(F_{4 l+2-j}-F_{j+1}\right)=\left[\begin{array}{c}
4 l+1 \\
j
\end{array}\right]_{F} \frac{F_{2 l+2} F_{4 l}}{F_{4 l+1}}
$$

and

$$
\sum_{j=0}^{2 l-1}\left[\begin{array}{c}
4 l+1 \\
j
\end{array}\right]_{F}\left(F_{4 l+2-j}-F_{j+1}\right)=\left[\begin{array}{c}
4 l \\
2 l-1
\end{array}\right]_{F} \frac{F_{2 l+2} F_{4 l}}{F_{2 l}}
$$

which is a special case of identity (16). The induction leap is the same as in the proof of identity (2).

Acknowledgements

The first author is grateful to FEMAT-Brazil and CNPq-Brazil for the financial support.

References

[1] Fontené, G.: Généralisation d' ene formule connue, Nouv. Ann. Math 4 (15) (1915), 112.
[2] Horadam, A. F.: Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965), 437-446.
[3] Jarden, D.: Recurring sequences, In. A Colletion of Papers, Riveon Lematematika, 1966.
[4] Luca, F.-Marques, D.-Stănică, P.: On the spacings between C-nomial coefficients, J. Number Theory 130 (2010), 82-100.
[5] Marques, D.-Togbé, A.: Perfect powers among C-nomial coefficients, C. R. Acad. Sci. Paris I 348 (2010), 717-720.
[6] Marques, D.-Trojovský, P.: On some new sums of Fibonomial coefficients, Fibonacci Quart. 50 (2012), 155-163.
[7] Riordan, J.: functions for powers of Fibonacci, Duke Math. J. 29 (1962), 5-12.
[8] Shannon, A. G.: A method of Carlitz applied to the k-th power generating function for Fibonacci numbers, Fibonacci Quart. 12 (1974), 293-299.
[9] Seibert, J.-Trojovský, P.: On some identities for the Fibonomial coefficients. Math. Slovaca 55 (2005), 9-19.
[10] Torretto, R.-Fuchs, A.: Generalized Binomial Coefficients, Fibonacci Quart. 2 (1964), 296-302.
[11] Vajda, S.: Fibonacci and Lucas Numbers and the Golden Section, Holstel Press, 1989.
[12] Vorobiev, N. N.: Fibonacci Numbers, Birkhäuser, Basel, 2003.
[13] Ward, M.: A calculus of sequences, Amer. J. Math., 58 (1936), 255-266.
[14] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences (OEIS), published electronically at http://oeis.org/

* Departamento de Matemática,

Universidade de Brasília,
70910-900 Brasília - DF,
Brazil
E-mail address: diego@mat.unb.br
** Department of Mathematics,
Faculty of Science,
University of Hradec Králové,
ROKitanského 62,
Hradec Králové,
Czech Republic
E-mail address: pavel.trojovsky@uhk.cz

[^0]: 2010 Mathematics Subject Classification. Primary 11B39, 15A36; Secondary 15A15.
 Key words and phrases. Fibonacci and Lucas numbers, Fibonomial Coefficients, identity, sum.

 Research supported in part by FEMAT-Brazil, CNPq-Brazil and Specific research 2103 UHK CZ.

